
JOURNAL OF COMPUTATIONAL PHYSICS 87, 148160 (1990)

Vectorization of a Treecode

JUNICHIRO MAKINO*

Institute ji)r Adwmced Study,
Princeton, New Jersey 08540

Received July 19, 1988; revised January 24, 1989

Vectorized algorithms for the force calculation and tree construction in the Barnes-Hut tree
algorithm are described. The basic idea for the vectorization of the force calculation is to
vectorize the tree traversal across particles, so that all particles in the system traverse the tree
simultaneously. The tree construction algorithm also makes use of the fact that particles can
be treated in parallel. Thus these algorithms take advantage of the internal parallelism in the
N-body system and the tree algorithm most effectively. As a natural result, these algorithms
can be used on a wide range of vectorjparallel architectures. including current supercomputers
and highly parallel architectures such as the Connection Machine. The vectorized code runs
about five times faster than the non-vector code on a Cyber 205 for an N-body system with
N= x192. ‘6’ 1990 Academic Press, Inc.

1. INTRODUCTION

The most time-consuming part of an N-body code is the force calculation.
A naive approach requires O(N’) computing cost. Recently, several “tree”
algorithms have been developed which map a hierarchical tree structure on an
N-body system [l&4]. In these algorithms, the force from distant particles is
replaced by the force from their center of the mass. Tree structures provide a
systematic way of performing this replacement, thereby reducing the cost of the
force calculation from 0(N2) to O(Nlog N).

Another algorithm which has an even better asymptotic behavior of the
computational cost scaling as O(N) has been proposed [S-7]. However, all
currently existing implementations of this O(N) algorithm in three dimensions are
limited to the uniform tree, in which the physical space is divided into cells of a
constant size. This uniform tree is not suitable for astronomical applications where
the spatial inhomogeneity tends to be very large. Thus we do not discuss the O(N)
algorithm here.

Practically, the difference in the actual computational cost between the
O(Nlog N) schemes and O(N) schemes is not likely to be large for N 5 106.
Katzenelson [S] discussed that the O(Nlog N) scheme requires six times more

* Present address: Department of Earth Sciences and Astronomy. College of Arts and Sciences,
University of Tokyo, Tokyo, Japan.

148
0021-9991~90 $3.00
CopyrIght #,c; 19YO b) Academic Press, Inc.
All rights of reproduction in any form reserved

VECTORIZATION OF A TREECODE ; .,q

computing time than the O(N) scheme for 1250k particles on the Connection
Machine CM-2. However, in his estimate the amount of computation of
OiNlcg N) scheme is overestimated roughly by a factor of 6. In [8], it is assumed
that

l7,& = 189(I - 2‘). [ii

where tl,e,15 is the number of cells that interact with a particle and i is the ieve! of
the tree. This number is correct for the implementation of the O(N log N) scheme
discussed in [S]. For the usual implementation (e.g.. [4]i. however. Makino Fi;l
showed that

for the accuracy comparable to that obtained by the most acclurate B<,‘v-:
calculation discussed in [8.].

At present, the fastest computers available are vector machmes wnh pipeline
architectures. The recursive structure of the algorithm makes it difficult IG
implement the tree algorithm effectively on vector machines. The standard For-
tran 77 does not allow recursive subroutines. We must unroll lhe recursive strzcrure
of the algorithm into a sequence of iterative operations. Several compilers sxh a.5
the Gray CFT accept recursive subroutines. However, the performance of the recur-
sive algorithm on vector machines tends to be rather poor, because it does not ma.ke
use of vector pipelines. The iterative algorithm exhibits similar low performance.
because the nature of the iteration prohibits the vectorization. Thus, we cannot take
advantage of the superior performance of the vector machines unless vve find some
way to reformulate the force calculation to adapt to the vector machines.

It is clear that forces on distinct particles can be evaluated i~d~~e~de~~t~y. This
is the most fundamental parallelism in an N-body calculations. Thus, we can iet a”:1
particles of the system traverse the tree simultaneously. arnes [lo] &scribed 23
implementation of this parallel force evaluation on a fine-grained parallel ma~5Gne.
His implementation, however, was strongly affected by both hardw
Iimitations. Thus it was rather complicated and not very efficient.
sim@e algorithm to realize the parallel tree rraversal. This algorithm has ‘r?een
implemented on vector machines with no fundamental difiiculty. Moreover. if IUS
been implemented effectively on highly parallel machines fl1j or coarse-gra.iceti
garailel machines.

After the force calculation is effectively vectorized. the cost of the tree construe.-
tion remains to be improved. In Section 3, we discuss a vectorizable algorithm for
the construction of the octtree used in the BarnesPHut aigorithm.
described a parallel tree construction based on a bottom-up ssheme.
used the bit operations intensively. Unfortunately, bit operations are not :-cry
efficient on the vector processors which are designed to perform floating point
operations effectively. Here, we describe a simpie and intuitive algori.th~ of
top-down tree construction that can be effectivety vestorized. The calculation of rhe

150 JUNICHIRO MAKINO

mass and the center of the mass coordinates of the cells is also vectorizable as
discussed by Hernquist 11121. Thus, all aspects of the tree algorithm are effectively
vectorizable.

In Section 4 we give the result of timing benchmarks. Our vectorized code runs
about five times faster than the original code and can outperform the direct
summation code for N> lo3 with average errors in the force of u 1% on a
Cyber 205. We will also give the result of timing runs on other supercomputers;
Cray X-MP/l and two Japanese supercomputers. In Section 5 we briefly discuss the
implementation of the present algorithm on parallel machines, especially coarse-
grained parallel machines like Cray X-MP,‘4 or ETA-lo.

2. VECTORIZED TREE TRAVERSAL

In the original Barnes-Hut algorithm, the force calculation is described as a
recursion :

ALGoRrmhf (a j. Recursive tree-force calculation for particle i.

subroutine treeforce(i, node)
if (node arid particle i are well separated j

force =jorce from the total mass in the cerzter qf mass oj- node
else

force = sum oj- forces from the children of node
endif
return

This algorithm is recursive, because the else block implies the calling of the
subroutine treeforce itself. We use the following condition to determine if a node is
well separated from a particle:

I/d < 8, (3)

where 1 is the size of the cube corresponding to the node, d is the distance between
the cube and the particle, and t’ is the parameter which determines the accuracy
and thereby the amount of computation needed. Figure 1 shows how this algorithm
works. To obtain the gravitational force on the particle indicated by X, we start at
the root of the tree. The root is usually not well separated from the particle.
Therefore, we descend the tree and try to evaluate the total force as a sum of the
forces from the children of the root. If a child-node is well separated, its contribu-
tion to the force is evaluated. If not, we further descend the tree recursively until
we reach nodes which are well separated or leaves which contain single particles
(which are by definition well separated).

In a usual sequential language such as C or Pascal, the above algorithm can be
implemented directly using recursive functions. The actual execution of the above
algorithm in these sequential languages results in a depth-first traversal of the tree.

VECTORIZATION OF A TR.EECODE !!i

FIG. 1. Recursive tree traversal. ,y indicates t’he particle on which !he fcrce is calculatea. Arrows
indicate how the calculation goes on.

In order to implement this depth-first search using Fortran 77. we must unroll
the recursive procedure into an iterative procedure. Such a formuiation was firs!
introduced by Barnes [131 who used stacks explicitly lo transform the recursion
into iteration, This algorithm is vectorizabie across parrricles. In the veclcrizei
code. every particle has its own stack. Thus, we have a vector of stacks. In each
iteration, we apply vector operations on this vector of stacks. Note that the content
of each stack differs for different particles. Though the same operation is applied on
all particles. the result is not the same because particles have different spatial
coordinates.

Or; a scalar machine, this stack-based algorithm is simple and runs eEcierrt!y.
Nevertheless. on vector machines, the stack manipulation requires complicated
coding resulting in considerable performance degradation. Here, we describe an
algorithm which does not require stack manipulation. The resulting code is simpler
than the stack-based one and runs faster.

In our merhod, the depth-first search is reformulated into a pu,reiy iterarive form,
Then, we vectorize that algorithm across particles. fn order to perform the depth-
first search we do not require the stack, if we have “preprocessed” the tree so that
we can obtain the necessary information.

The basic idea is to follow the “left wall” of the tree systematically. Using thi:
trick, we can traverse the whole tree in depth-first order. In tl;e force calcnlation
using the tree, we can apply a similar procedure, except that we somelimes stop
before we reach the leaf. Figure 2 shows how we traverse the tree. This Eraversal
gives exactly the same result as that of the recursive traversal of Fig. J. This
procedure ES schematically expressed as follow-s:

152 JUNICHIRO MAKlNO

ALGORITHM (b). Force calculation through a stack-less iterative tree walk,

subroutine treeforce(i)
node = root-node

while (node .ne. null)
if(node and the particle are well separated)

force = force + (force .jForn the center of mass of node)
node = next(node)

else
node = firstrhild(node)

endif
endwhile
return

Here we assume that the children of a node form an ordered set. first-child
returns the first element of the set of children of a node. This first-child corresponds
to the leftmost children of the nodes in Fig. 2. The jumps to right or upper-right
directions in Fig. 2 are performed using the next function. It can return a brother-
node, or an uncle-node, or a brother-of-grandfather-node, etc., depending on the
position of the node in the tree. To be precise, next is defined as follows:

function next(node)
if (node is not the last member of the children list of its parent)

next = the next member qf the parent 3 children list
else

next = next(the parent of node)
endif

return

FIG. 2. Stackless tree traversal. X indicates the particle on which the force is calculated. Arrows

indicate how the calculation goes on.

VECTORIZATION OF A TREECODE E : -2 i .i _'

In the actual implementation, it is not quite efficient to calf the function
time. Instead we evaluate and store the next node for each node before w
force calculation. The first-child can also be stored in simiiar way, Therefore, in tne
actual implementation, both procedures are replaced by a reference to an element
of an array.

The vectorization of Algorithm (b) should be straightforw-ard. If we had a
reasonably smart compiler like C* [141 of the Connection Machine [1.53 on ver:or
super-computers. we could say:

0 i-1, in parallel
calH treefcme(i)

enddo

Unfortunately, current compilers cannot vectorize DO loops containing subroutine
calls. Therefore we should expand the body of the su’oroutine treefmce iniine.
Several compilers such as Fujituu’s and the ETA Fortran have a hmited ability to
expand subroutines iniine. This ability, however, does nor help us. After ::be
subroutine t~~~~~r~~ is expanded inline, the above loop becomes as follows:

ALGORITHM (c). Subroutine call expanded inline.

Here, & something represents the body of the subroutine treeforce. Due to syntax
limitations in standard Fortran 77, the while . . . endwhile structure needs to be
implemented as a combination of an IF statemeor and a G
“Vectorizing” compilers cannot vectorize DO loops containing a b
Nevertheless, we can vectorize this by introducing a further modification:

ALGORITHM (d). Vectorized force calculation.

while(mx one particle is not ,finished)
do i= I, n in parallel

if(nor J%zished)
do simething

endif
endds

e~d~h~~e

This form is “simple” enough to be recognized as vectorizable by at least some
compifers. It is somewhat surprising that no vectorizing compiler recognizes the
structure of Algorithm (c) as vectorizable. A smart compiier should be able to
convert Algorithm (c) to Algorithm (d) automatically. In practice, some compilers

154 JUNICHIRO MAKINO

still complain that they cannot vectorize a DO loop which contains an IF state-
ment. At this point, it is a simple, though tedious, task to rewirte the code with
special vector functions or array extensions.

A significant inefficiency of Algorithm (d) is that the DO loop alway loops over
all particles, no matter how many particles actually need to be treated. When
executed in scalar mode, this fact does not cause a serious problem, because the IF
block which is not executed requires the time to evaluate the condition only.
However, when executed in vector mode, the IF block requires a time proportional
to the loop length, irrespective of the number of iterations in which the IF state-
ment is evaluated as true. This consideration leads to the following coding:

ALGORITHM (e). Vectorization of IF using list vector.

nlist = 0
do i = 1, n in parallel

list(i) = i
enddo
nlist = n
while (nlist .gt. 0)

do i= 1, niist in parallel
do something for list(i)

enddo
new-nlist = 0
do i = 1, nlist

if (particle list(i j is not fiGshed)
new-nlist = new-nlist + 1
list(new-nlist) = list(i)

endif
enddo
nlist = new-_nlist

endwhile

The key idea is to use the list vector, which is a vector bf indices, to keep the list
of the particles which have not finished their force calculation. The body of the
force calculation is applied only to those particles which appear in the list. After
each iteration, the list is reconstructed to purge the particles that have finished their
force calculation. Note that the last DO loop is vectorizable. Even if the compiler
does not vectorize ir, manufacturers supply vector functions which can be used in
place of the DO loop on all machines we tested. This operation is called a
“compress” operation.

We should remark that there still remains some room for improvement. In the
main loop of Algorithm (e) (the do somethirzg loop), everything is accessed
indirectly via the list vector. If we keep the “compressed” list of positions of
particles, we can reduce the amount of indirect accessing. This compressed list of
positions needs to be reconstructed after each iteration, in the same way as the list

vector itself. Nevertheless this modification offers some improvemem in speed,
because on any of vector machines the “compress” operation is much faster ‘Aan

the indirect addressing. The improvement of speed of this final form over

Algorithm (d) is in the range of 15 to 50%, depending on the compilers and the
hardware. It should be noted that there is at least one compiler which automaticall?;

generates the list vector for an F statement and thus makes the modification from

kigorithm (d) to !e) unnecessary (Fujituu Fortran ‘K/VP i.

The most intuitive way to construct an octtree for a three- dimensionai N-body
system is the foilowing: First, we make a box large enough to contain the whole

svstem. Then we repeatedly subdivide the boxes into eight subboxes until each box d
at the leaf of the tree contains only one particle. In practice, there are two oossible
algorithms to implement the procedure described above. The first one is the dep:h-

first search. In this method, the subbox first created is immediately subdivided. Thrs
process continues until we reach the leaf. Then we go up this tree, until we rea_cb

the box which has a subbox that is not fully subdivided. Then we complete this
subbox in a similar way and repeat this process until ive complete the whole tree.
This method is directly implemented by recursive procedures. However. there is_

little parallelism.

The second one is the breadth-first search. In this method, ah‘ subboxes in the
same level of the tree are subdivided simultenously. Implementation of breadth-first

search requires considerably more bookkeeping than simple recursive formulation

of the depth-first search. Nevertheless, by using the breadth-first search, w-e can

obtain a much higher degree of parallelism, because all boxes in one level cm be
treated in vector mode. The algorithm is schematically cksrribed:

ALGCBUTHRI (f 1. Vectorized tree construction.

create tiie root node
atrach a/i partic!es lo the root

set Jlags .f~r ail particies as not-finished
I=1
~~~~e~.~~r ar?~~ i, fiag(i ) = not_finished) 
f5r eaclz particie with the Jlag not_finished 

&ie~erw~m ~iAicl~ subbox it is containen’ 

enah 

5X1.87:1-31 



156 JUNICHIRO MAKINO 

for all subbox in level 1 
if (it contains at least one particle) 

create the corresponding node, correct it to its parent 

endif 
end for 
for each particle with the flag notfinished 

if (the cell which it attached to contain only one particle) 

setthe jlag as finished 
endif 

end for 
l=l+l 

endwhile 

With the above algorithm, we first create the root node, which is large enough 

to contain all particles. Then we construct the tree level by level. At the first step, 
we determine which subnode of the root node each particle is contained in. If any 

subnode contains no particles, we do not create that node. If any subnode contain 
only one particle, that particle is labeled as finished. Then we repeat the above 

process for the subnodes of the root node that contain more than one particles. We 
repeat this process until all particles are labeled as finished. The actual implementa- 

tion is quite a bit more complicated than the schematic form of Algorithm (f), 

because of difficulties similar to those we encountered in Section 2. 
The calculation of the mass and center of mass coordinates is also vectorizable 

by treating all nodes in the same level of the tree simultaneously as discussed 

in [12]. 

4. TIMING RESULTS 

For calculations with NZ 103, our vectorized code runs about five times faster 
than the partially vectorized code of Hernquist [16] on a Cyber 205. We can 

evaluate the force on all particles in a 1024-body system in 0.3 s or an 8192-body 
system in 3.2 s within an accuracy _ 1% (13 = 1, Plummer model). If we compare 

this with Hernquist’s [12] fully vectorized code on a Cray X-MP, our code on a 

Cyber is slightly slower. Hernquist [12] gives a timing of 2.5 s/step for an 
8192-body system on a Cray X-MP. Our algorithm runs somewhat faster on a 
Cray X-MP than on a Cyber, thus resulting in a speed comparable to that of 
Hernquist’s [ 121 code. 

Table I gives the timing for one integration step for an 8192-body Plummer 
model on several supercomputers with 0 = 1.0. All timings are performed using the 
full precision (64 bit) arithmetic and the monopole moment only. It should be 
noted that our code is specially optimized for the Cyber and the timing on other 
machines may not indicate their best performance. The highest absolute speed is 
attained by a Hitac S-820, which is about five times faster than a Cray or a Cyber. 



VECTORIZATION OF A TREECODE ‘57 

TABLE I 

h%achine 

Performance of the Vecrorized Code 
-- 

Di:ect 
Treecode Summation Net gair, b! 

(cpu s:step I ! cpu s, step / treecode 

Cyber 205” ( FTNlOO) 3.24 I6.G -1.9 
Gray X-MP/18 (CFT77) 2.83 11.5 1.1 
Facom VP-400 t,FORTRAN77/VP VlOLZO) 1.79 t -. 33 ;. 6 
Bitac S-820,80 t FQRT77:HAP Xl-OA) 0.57 1.73 ?’ -.G 

a 3 pipes. 

However, the relative speedup from the O(N’) direct summation is somewhat jower 
for Japanese machines. 

The efficiency of our method over the scaiar versiori does not depend on t5e 
value of H. Other methods [Ill, 171 tend to show higher efficiency for smailcr salue 
of 8. The reason for this difference is quite simple. Our method vectorizes the 
calculation across particles. Thus the vector length is always equai to N. Other 
schemes vectorize the force calculation for one particle. Thus for smaller 0 they get 
longer vectors and therefore better efficiency. 

Table II shows the cpu time per step on a Cyber. The number of particles and 
other parameters are the same as in Table I, unless specified otherwise. The term 
half-precision stands for the 32 bit arithmetic. The half-precision version is abone 
20% faster than the full-precision version. The theoretical peak speed of a Cybe; 
Lx the half-precision calculation is twice that for the full-precision calculation. The 
reason why the obtained speedup is much smaller than the theoretical factor of two 
is that the bottleneck of our algorithm is the indirect memory accessing, for wi?ich 
the speed is same for both full- and half-precision calculations. 

The quadrupole version is about 70 % slower than the monopole version both for 
the half- and full-precision calculations. This factor depends on 8 very weaktly and 
is similar to that Hernquist [IZ] obtained on a Cray X-MP. 8n Japanese machine, 

TABLE II 

Performance on Cyter 

cpu time per step js, 

Monopole 
Quadrupole 
MonopGle 

Quadrupo!e 

Half precisior. 
Half precision 
Full precision 
Full precision 



158 JUNICHIRO MAKINO 

the increase of CPU time by using quadrupole moments is less than 30%. Japanese 
machines exhibit less speed down than a Cyber simply because the efficiency of the 
monopole version is lower on Japanese machines than on a Cyber. 

5. DISCUSSION 

5.1. Parallel Maclzines 

The algorithms described in Sections 2 and 3 have been successfully implemented 
on a highly parallel machine, the Connection Machine [IS]. The detail of this 
implementation is described elsewhere [ 111. Unfortunately, the relative efficiency 
compared to an O(N’) code is even lower than the lowest value obtained on vector 
machines. The absolute performance is, however, similar to that of a Cyber or a 
Cray. 

We have not tried to implement our algorithm on MIMD multiprocessor super- 
computers like Cray X-MP:4 or ETA-10 yet. The implementation, however, seems 
to be quite straightforward. With the tree algorithm, the most expensive part is the 
force calculation using the tree. The cost of the tree construction is much smaller, 
typically a few percent of the total cost. Therefore we can safely limit our attention 
to the force calculation only. The tree construction will be performed on one 
processor. The task of force calculation will be distributed to all available 
processors. If we have n processors, each will hold N/n particles. Then, the force on 
those particles is evaluated using Algorithm (d). The details of the implementation 
will be largely machine dependent. For example, on a machine with a shared- 
memory architecture like the Alliant FX, we can actually use Algorithm (d) without 
any modification. The compiler of the Alliant FX is smart enough to produce a 
machine code that automatically distributes the task to all available processors. On 
machines that have large and fast local memory, the most effective procedure would 
be to keep copies of the whole tree on the local memory of each processor. 

On an Alliant FX-8 with four processors, we obtained a speedup of factor 3.5 
using four processors. This seems quite satisfactory for what we can expect from the 
automatic parallelization. On other machines we expect similar performance. 

5.2. Conclusion 

We have discussed vectorizable algorithms for the force calculation using trees 
and for the tree construction itself. Both algorithms are vectorized across particles. 
Therefore the degree of parallelism, i.e., the vector length, is equal to the particle 
number N. This long vector length is the primary advantage of our algorithm, 
because it promises reasonable performance on any vector hardware, provided it 
has the ability to vectorize indirect addressing (gather/scatter function). We 
obtained a performance similar to that of Hernquist’s [12] vectorized code on a 
Cray X-MP. On a Cyber perhaps our code would show better performance than 
Hernquist’s code, because the vector length is much longer for our code and 



VECTORIZGTION OF A TREECODE is9 

because a Cyber requires a much longer vector length than a Gray for god 
performance. Thus. our code runs effectively on a wide range of vector machines. 
TFhis imp&es that our code is “portable,” at ieast on vector processors. For Japanese 
machines we can use the same code written in standard Fortran 77. If a k,3 
implementation of the CFT77 compiler was availabk, we could also zse S. 
Foriran 77 version on a Cray. 

Our algorithm is applicable to both fme-grained and coarse-grained parzlile! 
machines. With a smart compiler, the Fortran 7’7 version of oar code runs e%icientlq 
on a coarse-grained parallel machine, as was shown in the case of Allian: FX-3. 
Thus we can conclude that the tree algorithm can be effectively used on any ryp: 
of fast machine that is currently available or will be available in the near fueure. 

Thze is one flaw in our method, however. The fact that we vectorized the force 
calculation across particles makes it very difficult to cse individual time steps 
Hcrnquist’s LIZ?] method is better suited for this purpose. owever, by appiying the 
block timestep method (e.g., [Is]), we can still obtai t gain from our algo-. 
rithm. Finally, we should note that our method and ernquist’s method cafi bc 
applied sim-tiltaneously. Our method and his method vectorize the force calcuiatlcn 
in different directions. By careful coding we can combine these two methods. 

I thank Joshua Barnes and Lars Hernquist for providing their code and For !~eful discussions. i rhank 
Pier Hut ix stimulating discussions. Computations were perlbrzxd at John van ?&mans Narional 
Supercomputer Center, Princeton, Computer Center of University of Tokyo. Japzn. and institute Fsor 
Scpercomputing Research, Tokyo, Japan. 

REFERENCES 

I. A. APPEL . SIAM J. Sci. S/at&t. Cornput. 6, 85 (1985). 
2. J. G. JERNIGAN. “Direct &r-Body Simulatiorx with a Recursive Center of Mass Reduction and 

Reguiarization ” , in Dynamics of Star Clusters, IAiL SJwlp. ,I “3, edi:ed by 3. Goodmar. and P. Hut 
!Dordrecht, Reidel, 1985 J, p. 275. 

3. D. POTTER. Ph D. thesis. Physics Department, University of California. Berkele?. 1385 (unpublished). 
L. J. BARNES xND P. HUT. Nature 324, 446 (1986). 
5. L G~EENCARD AND V. ROKALIN, J. Comput. Phys. 73, 325 ( ?987 i. 
5. L. CWENC-ARD, The Rapid Ewlitation of Poterrrial Fields in Pamde S;.mms (itliT ?rcss, 

Czmbridge. MA. 1988 )_ 
7. F. ZHAO, Master’s thesis, Department of Electrical Engineering and Computer Science, MIT 1987 

(un?ablished ). 
S J. KATZENELSGN. .SI.dM J. Sri. Sttrris!. Compur.. in press. 
9. 3. M~KINO, J. Compur. Phys., in press, 

IO. J. BAKNES, “An Efficient N-Body Algorithm for a Fine-Grain Paral!el Computer,” in T& L,.YP it/ 
Supercompurers in Srellar Dynamics. edited by S. L. W. Mchaillen and F. Hut. (Springer-i’e:lsg. 
Dordrecht. 1986 j, p. 175. 



160 JUNICHIRO MAKINO 

12. L. HERNQUIST. J. Conzput. PIzys. 87. 137 (1990). 
13. J. BARNES, unpublished preprint, 1987. 
14. J. ROSE AND G. L. STEELE, “C*: An Extended C Language for Data Parallel Programming,” Think- 

ing Machines Corporation Technical Report PL87-5: 1987 (unpublished). 
15. W. D. HK.LIS, T/ze Connecrion Muchine (MIT Press, Cambridge, MA, 1985). 
16. L. HERNQLJIST, .4p. J. Suppl. 76, 61 (1987). 
17. J. BARNES, J. Cornput. Phys. 87, 161 (1990). 
18. S. L. W. MCMILLAN. ‘The Vectorization of Small-N Integrators” in Tlze Use of Supercomputers 

in Stelkrr Q~znmics, edited by S. L. W. McMillan and P. Hut (Springer-Verlag, Dordrecht, 
1986~. p. 156. 


